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Ligand enrichment among top-ranking hits is a key metric of molecular docking. To avoid bias, decoys
should resemble ligands physically, so that enrichment is not simply a separation of gross features, yet be
chemically distinct from them, so that they are unlikely to be binders. We have assembled a directory of
useful decoys (DUD), with 2950 ligands for 40 different targets. Every ligand has 36 decoy molecules that
are physically similar but topologically distinct, leading to a database of 98 266 compounds. For most targets,
enrichment was at least half a log better with uncorrected databases such as the MDDR than with DUD,
evidence of bias in the former. These calculations also allowed 40× 40 cross-docking, where the enrichments
of each ligand set could be compared for all 40 targets, enabling a specificity metric for the docking screens.
DUD is freely available online as a benchmarking set for docking at http://blaster.docking.org/dud/.

Introduction

Although molecular docking screens of chemical databases
are widely used for ligand discovery,1-7 the method retains
important weaknesses.8-13 A testament to these is the criterion
by which docking screens are evaluated: the enrichment of
annotated ligands from among a large database of presumed
nonbinding “decoy” molecules. In these retrospective calcula-
tions, the enrichment factor is the concentration of the annotated
ligands among the top-scoring docking hits compared to their
concentration throughout the entire database. Other possible
metrics, such as the magnitude of the docking energies, or even
monotonic rank order among the ligands, are only used
occasionally and in restricted sets; in the general case, they
remain unreliable because of the many approximations used in
docking. Thus, the success of a docking screen is evaluated by
its capacity to enrich the small number of known active
compounds in the top ranks of a screen from among a much
greater number of decoy molecules in the database.14-23

The relationship of the decoy molecules to the ligands is
critical in assessing enrichment factors in docking screens.
Docking scoring functions can depend on molecular size.24-26

For instance, Verdonk and colleagues27 have observed that if
there are significant differences in size distribution between
ligands and decoys, docking enrichments can appear to be
artificially good, and the same is undoubtedly true for other
physical features. The database decoys should thus resemble
the physical properties of the annotated ligands well enough so
that enrichment is not simply a separation of trivial physical
features. The decoys nevertheless should be chemically distinct
from the ligands so that they are likely to be, in fact, nonbinders.

Investigators have assembled sets of ligands and presumed
decoys for numerous targets and used them to evaluate docking
performance based on enrichment. Rognan and colleagues made
an important contribution toward this end with the introduction
of a set of 990 randomly chosen molecules combined with 10
thymidine kinase (TK)a and 10 estrogen receptor (ER) antago-
nists,whichweresubsequentlyusedinseveralstudies.15,19,20,23,28-30

More recently, Jain and colleagues introduced a set of 1000

random druglike compounds to complement the Rognan set and
combined those with 252 ligands from 27 protein targets to
evaluate docking enrichment factors.23 Several other groups,
including ourselves, have used the 100 000 molecule MDL Drug
Data Report database (MDDR, Elsevier MDL, San Leandro CA)
as a source of both ligands and decoys.31-34 Each of these
approaches has drawbacks. None of these sets of molecules has
been adjusted so that the physical properties of the ligands are
matched by those of the decoys. Indeed, in both the Rognan
set and its derivatives the annotated ligands and the presumed
decoys differ greatly in their physical properties, making
enrichment factors calculated with these sets open to bias (see
Results). Whereas there is less room for bias in the MDDR
database, and statistical variance is less likely here than in the
smaller decoy sets, differences between ligand and decoy sets
lead to significant enrichment-factor bias (see Results). The
MDDR has the further disadvantage of being a nonpublic access
database, which was an advantage of the Rognan and Jain sets.

We were interested in developing large benchmarking sets
to evaluate docking screening calculations. We wanted these
sets to cover a large number of proteins so as to offer a reliable
view of how docking might perform on typical and interesting
targets. We also wanted these sets to be publicly available, so
that docking programs could be compared broadly in “apples
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to apples” comparisons. We wanted the database to be large
enough to have decoys and ligands physically matched so as to
be as free from physical and statistical features as possible. We
began with 2950 ligands for 40 different target proteins taken
from the literature; each set of ligands for each protein had tens
to hundreds of molecules in it. For each ligand in each set, 36
molecules were chosen from the “druglike” subset of the ZINC
database of commercially available compounds.35 Each of these
36 resembled the particular ligand in physical properties, such
as molecular weight, cLogP, and number of hydrogen bonding
groups, but differed from the ligand topologically. This resulted
in a database of 95 316 decoy molecules whose physical
properties closely matched those of the 2950 ligands that they
were chosen to counterpoint. This “directory of useful decoys”
(DUD) was docked against the 40 protein targets, using an
automated docking engine that required little or no user
guidance.

Here we report on the enrichments resulting from this large,
bias-corrected database and compare these to those from both
small, uncorrected decoy sets15,23 and to the large MDDR
database. Our results suggest that DUD provides a more
stringent test with which to evaluate virtual screening perfor-
mance. Even using the MDDR as decoys has enrichment factors
half a log better than those using DUD with exactly the same
docking procedure, speaking to enrichment factor biases even
in large, uncorrected databases. These calculations also allowed
for a 40 × 40 cross-docking, where the enrichments of each
ligand set were compared for all forty targets using the same
background decoys. These cross-docking results suggest a
specificity metric to evaluate docking screens. The usefulness
of these targets, ligands, and decoys as community benchmark-
ing sets for docking will be considered here, as will the prospects
for the automated docking pipeline that was deployed in these
studies. The benchmarking sets, including protein structures,
docking energy grids and input files, and the full DUD database
are available at blaster.docking.org/dud/.

Method

Protein Target Selection and Ligand Collection.Forty protein
targets were selected on the basis of the availability of annotated
ligands, crystal structures, and, often, previous docking studies. We
used the structure used in previous docking studies if one was
available, and otherwise we used the best complex available as
judged by resolution and the absence of errors. All of these proteins
have ligand-bound X-ray crystal structures available in the Protein
Data Bank (PDB),36 with the exception of the PDGFrb and VEGFr2
kinases. We organized these targets into six classes: nuclear
hormone receptors, kinases, serine proteases, metalloenzymes, folate
enzymes, and other enzymes (Table 1). The number of ligands
varies from 12 (∼ 0.01% of database) to 416 (∼ 0.4% of database).
A total of 2950 ligands were included overall.

Most of these targets have been studied previously by experi-
mental methods and computational approaches. Among them,
estrogen receptor (ER)15,20,23,28,29,37-39 and thymidine kinase
(TK)15,19,20,23,28,30,40have been extensively used to benchmark and
evaluate different docking methods and scoring functions. Enrich-
ment studies were also published on several of the other systems,
including CDK2,20,41 P38 MAP kinase,18,20,32,39thrombin,20,31,39,41

factor Xa,38,42 HIV protease,18,20,40 DHFR,31,40 neuraminidase,39

aldose reductase,31,43 HIV-RT,20,30 AChE,31,38 and COX-2.20,39,44

DUD Generation.DUD was created as follows (Figure 1). The
2950 annotated ligands were seeded among 3.5 million Lipinski-
compliant molecules from the ZINC database of commercially
available compounds (version 6, December 2005).35 Chiral an-
notated ligands were prepared in the correct stereochemical form
if known. Feature key fingerprints were calculated using the default

type 2 substructure keys of CACTVS,45 and the fingerprint-based
similarity analysis was performed with the program SUBSET.46

Substructure keys are bit strings where 1 represents the presence
of a particular functional group. Compounds with Tanimoto
coefficient (Tc) less than 0.9 to any annotated ligand were selected,
excluding chirality duplicates (we note that a Tc less than 0.9 for
CACTVS type 2 fingerprints roughly corresponds to a Tc less than
about 0.7 for the widely used Daylight fingerprints; see Results).
This reduced the ZINC compounds to 1.5 million molecules
topologically dissimilar to the ligands. The program QikProp
(Schrodinger, LLC, New York, NY) was used to calculate 32
physical properties of all the annotated ligands and selected ZINC
compounds from the previous step, and QikSim (Schrodinger, LLC,
New York, NY) was applied to prioritize ZINC compounds

Table 1. Enrichments of the Annotated Ligands Using the Decoys in
DUD for Forty Targets by Dockinga

protein
PDB
code

resolution
(Å)

no. of
ligandsb

no. of
decoys EFmax EF1 EF20

Nuclear Hormone Receptors
AR 1xq2 1.9 74 (a,b) 2630 60.2 33.5 3.8
ERagonist 1l2i 1.9 67 (a-c) 2361 29.6 19.2 4.5
ERantagonist 3ert 1.9 39 (a-d) 1399 101.6 12.7 1.3
GR 1m2z 2.5 78 (a) 2804 31.7 8.9 1.4
MR 2aa2 1.9 15 (a) 535 330.0 46.2 3.7
PPARg 1fm9 2.1 81 (a) 2910 1.0 0.0 0.0
PR 1sr7 1.9 27 (a) 967 2.9 0.0 2.0
RXRa 1mvc 1.9 20 (a) 708 148.5 24.8 2.2

Kinases
CDK2 1ckp 2.1 50 (e,f) 1780 19.8 13.9 1.4
EGFr 1m17 2.6 416 (g) 14914 3.8 2.1 2.4
FGFr1 1agw 2.4 118 (g) 4216 1.0 0.0 0.2
HSP90 1uy6 1.9 24 (h) 861 10.8 8.6 2.0
P38 MAP 1kv2 2.8 234 (g) 8399 4.1 2.1 2.4
PDGFrb model n/a 157 (g) 5625 1.2 0.0 0.6
SRC 2src 1.5 162 (g) 5801 3.1 1.2 1.5
TK 1kim 2.1 22 (a,d,i) 785 63.0 54.0 5.0
VEGFr2 1vr2 2.4 74 (j) 2647 2.2 1.3 1.4

Serine Proteases
FXa 1f0r 2.7 142 (e,f,k) 5102 34.9 14.6 3.8
thrombin 1ba8 1.8 65 (e,l,m) 2294 18.3 13.7 2.9
trypsin 1bju 1.8 43 (e,l) 1545 22.5 22.5 2.6

Metalloenzymes
ACE 1o86 2.0 49 (a,m) 1728 141.4 40.4 3.7
ADA 1stw 2.0 23 (a,e) 822 21.5 12.9 2.4
COMT 1h1d 2.0 12 (a) 430 11.8 0.0 3.3
PDE5 1xp0 1.8 51 (f) 1810 29.1 11.8 2.3

Folate Enzymes
DHFR 3dfr 1.7 201 (m) 7150 28.7 21.7 3.5
GART 1c2t 2.1 21 (n) 753 70.7 42.4 3.3

Other Enzymes
AChE 1eve 2.5 105 (a,e,m) 3732 3.1 1.9 2.0
ALR2 1ah3 2.3 26 (o) 920 76.2 38.1 2.3
AmpC 1xgj 2.0 21 (p) 734 23.6 17.1 4.7
COX-1 1p4g 2.1 25 (i) 850 9.9 4.0 1.6
COX-2 1cx2 3.0 349 (c,f,m) 12491 29.1 20.1 3.3
GPB 1a8i 1.8 52 (e,m) 1851 28.6 22.8 4.1
HIVPR 1hpx 2.0 53 (a,e) 1888 9.3 3.7 2.2
HIVRT 1rt1 2.6 40 (q) 1439 49.5 5.0 3.0
HMGR 1hw8 2.1 35 (a,i) 1242 198.0 33.9 2.1
InhA 1p44 2.7 85 (r) 3043 1.0 0.0 0.3
NA 1a4g 2.2 49 (c,e,i) 1745 60.6 20.2 3.3
PARP 1efy 2.2 33 (s) 1178 6.3 6.0 3.6
PNP 1b8o 1.5 25 (e,t) 884 158.4 31.7 4.4
SAHH 1a7a 2.8 33 (i) 1159 120.0 78.0 5.0

a Six representative targets (in bold) are discussed in more detail in the
text. b Annotated ligands were collected from (a) KiBank,67 (b) NCTR data
set,68 (c) Stahl data set,16 (d) from ref 15, (e) PDBbind database,69 (f)
Jorissen/Gilson data set,70 (g) Kinase inhibitor data set,32 (h) refs 71 and
72, (i) PubChem (http://pubchem.ncbi.nlm.nih.gov), (j) refs 73-75, (k)
Jacobsson test set,38 (l) Bohm serine protease inhibitor data set,76 (m)
Sutherland QSAR test set,77 (n) ref 78, (o) ref 79, (p) refs 5, 80, and 81, (q)
ref 82, (r) contributed by Dr. Xin He (UCSF, personal communication), (s)
ref 83, and (t) ref 84.
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possessing similar properties to any of the ligands. A weight of 4
was used to emphasize the druglike descriptors (molecular weight,
number of hydrogen bond acceptors, number of hydrogen bond
donors, number of rotatable bonds, and logP), and a weight of 1
was used for the number of important functional groups (amine,
amide, amidine, and carboxylic acid), and the rest of the descriptors
were ignored (weight 0) during the similarity analysis procedure.
Thirty-six decoy compounds were selected for each ligand, leading
to a total of 95 316 decoys that were physically similar but
topologically dissimilar to the 2950 annotated ligands. The total
number of decoys is less than 36 times the number of annotated
ligands because some ligands had the same decoys.

Dockable Database Preparation.Molecules were prepared
for docking using the latest version of the ZINC protocol.35

Briefly, molecules were converted from 2D SDF to isomeric
SMILES using OEChem (OpenEye Scientific Software, Santa Fe,
NM). An initial 3D structure was generated with Corina (Molecular
Networks GmbH). A protonated form of each molecule at pH 7.0
was calculated with LigPrep (Schrodinger, LLC, New York, NY)
with additional protonated and tautomeric forms calculated in the
range of pH 5.75-8.25 using modified versions of LigPrep’s
parameter files. For each protonated form, we again used Corina
to obtain a 3D model and then used AMSOL to calculate partial
atomic charges and atomic desolvation energies.47 We used
Omega (OpenEye Scientific Software, Santa Fe NM) to enumerate
accessible conformations; ring conformations calculated by
Corina were preserved. AMSOL and Omega results were com-
bined into a single “flexibase” format file using our program
Mol2db.33 All new parameter files used in this process (rules.txt,
tautomer_list, ionizer.ini, and torlib.txt) are available in the Sup-
porting Information.

Overall Virtual Screening Strategy. To undertake docking
screens against 40 targets, it was important to automate our
procedures as much as possible (Supporting Information, Figure
S1). Most of the labor-intensive steps formerly performed manually
have been automated, including most of the binding site preparation,
sphere or “hot spot” generation, scoring grid calculation, docking
calculation, and data analysis. For simplicity, our automated
procedure removes all water molecules, including structural waters,
by default. We describe docking results achieved with or without
expert intervention as “semiautomated” or “automated”, respec-
tively. For both semiautomated and automated procedures, the only
input requirements were a protein structure file and a specification
of the protein-binding site. Expert intervention during protein
structure preparation or binding site identification significantly
improved the docking results for 13 out of the 40 targets (see
Results). The fully automated procedure was used for all 40 targets,
the semiautomated procedure being attempted only when docking
enrichment from the fully automated procedure was poor.

Manual Preparation. For some targets, protein structure
preparation involves steps that are challenging to automate, such

as differentiating cofactors from ligands, parametrizing those
cofactors, perceiving structural water molecules, identifying and
parametrizing metal ions involved in ligand binding, correctly
assigning the protonation state on binding site residues (e.g.
histidines and cysteines), and selecting among disordered residues.

Parametrizing the cofactor is challenging to automate. Cofactors
were present for the following targets: TK, SO4; DHFR, NADPH;
GART, â-GAR; ALR2 and InhA, NADP+; GPB, PLP; PNP, PO4;
and SAHH, NAD+. In these cases, we treated the cofactors as part
of the target, manually preparing their parameters for the van der
Waals (vdW) and electrostatic energy calculations. Once a param-
eter file has been prepared for a cofactor, the scripts can recognize
it on the basis of its PDB residue name, and it becomes part of the
automated procedure in future runs.

For control calculations, the crystallographic ligand was also
prepared manually for docking using SYBYL.48 In the case of
PDGFrb kinase, where no crystal structure was available and a
modeled structure was used,49,50 the cognate ligand was obtained
from the X-ray crystal structure of c-Kit kinase, the homology
modeling template. Similarly, only an uncomplexed apo structure
was available for VEGFr1 kinase, so its native ligand was obtained
by superimposing FGFr1 kinase, a homologue with high sequence
and structural identity.

In target systems with large ligands spanning more than one
pocket, it is helpful to specify that part of the ligand most intimately
involved in binding. Such a fragment is presented to the automated
scripts as an individual file that can be recognized as the reference
state for generating the docking spheres or “hot spots”. Other special
measures include manually redistributing the partial atomic charges
of polar atoms in critical binding site residues to increase polarity
and thus favoring polar ligands, as described previously.5,34,51

Automated Steps.The automated docking pipeline begins with
the receptor structure file and its cocrystallized ligand or a manually
curated specification of the binding site. All tasks, including sphere
generation, scoring grid and docking calculations, and analysis of
enrichment, are driven automatically (Figure S1). The scheduling
system Condor (University of Wisconsin, Madison, WI) was used
to manage jobs on our Linux cluster.

Binding site residues are identified as those being within 12 Å
of any heavy atom of the crystallographic ligand or the residues
used to define the site, using the program FILT (from the DOCK3.5
distribution). The solvent-accessible molecular surface52 of the
protein binding site is then calculated with the program DMS53

using a probe radius of 1.4 Å. Receptor-derived spheres are
calculated using the program SPHGEN (part of the UCSF DOCK
suite),54 while the ligand-derived spheres are simply generated from
the positions of the heavy atoms of the crystallographic ligand, if
available. If the molecular fragment file is present, the ligand-
derived spheres are created from the molecular fragment instead
of using the entire ligand structure. The matching spheres, required
for orientation of the ligand in the binding site, are obtained by
augmenting the ligand-derived spheres with receptor-derived spheres.
Spheres furthest away from ligand-derived spheres, furthest from
the centroid of the remaining spheres, too close to receptor atoms,
or too close to each other are removed iteratively until the total
number of spheres is 35 or less. Spheres are labeled for chemical
matching based on the hydrogen-bonding properties and charged
states of nearby receptor atoms.55

The scoring grids are also prepared automatically. The grid box
dimensions are initially set so that the edges extend 15 Å beyond
the matching spheres. The box dimensions are refined to maximize
the coverage of the protein without exceeding 2 million grid points
at a resolution of three points per angstrom. Polar hydrogens are
added to the protein using SYBYL.48 Four scoring grids are
generated: an excluded volume grid using DISTMAP,56 a united
atom AMBER-based van der Waals potential grid using CHEM-
GRID,56 an electrostatic potential grid using DelPhi,57 and a solvent
occlusion map using the program SOLVMAP (B Shoichet, unpub-
lished results). The Delphi grid potential is calculated using a
dielectric of 2 with the internal low dielectric volume determined
by the protein atoms augmented by dummy atoms occupying the

Figure 1. The schematic description of the procedure to generate
DUD: Molecular weight (MW), number of hydrogen bond acceptors
(HBacc), number of hydrogen bond donors (HBdon), number of
rotatable bonds (RB). *We note that a Tc less than 0.9 for CACTVS
type 2 fingerprints roughly corresponds to a Tc less than about 0.7 for
the Daylight fingerprints.

Ligand and Decoy Benchmarking Sets for Docking Journal of Medicinal Chemistry, 2006, Vol. 49, No. 236791



binding pocket, and an external dielectric of 78 for the external
solvent environment. When structural waters, cofactors, or metal
ions are present, they are treated as part of the protein.

Docking was performed with DOCK 3.5.54, a flexible-ligand
method that uses a force-field-based scoring function composed of
van der Waals and electrostatic interaction energies corrected for
ligand desolvation.33,47,56 The sampling of ligand orientations in
DOCK3.5.54 can be varied according to several user-defined
parameters, which we set to the same values for all 40 systems, as
follows. The bin size for both receptor and ligand were set to 0.4
Å and the overlap bin size was set to 0.3 Å. A distance tolerance
(dislim) of 1.5 Å was applied for matching the ligand onto the
matching spheres, and ligand orientations were rejected if the color
of a ligand-receptor pair did not match. For each ligand orientation,
the conformational ensemble is filtered for steric complementarity
using DISTMAP with the polar and nonpolar close contact limits
of 2.3 and 2.6 Å, respectively. Ligand conformations are scored
on the basis of the total docking energy (Etot ) Eele + Evdw -
∆Glig-solv), which is the sum of electrostatic (Eele) and van der Waals
(Evdw) interaction energies, corrected by the partial ligand desol-
vation energy (∆Glig-solv).47 Final energies are computed after 25
steps of rigid-body minimization. A single docking pose with the
best total energy score is saved for each docked molecule. For
ligands with multiple protonation states and tautomeric forms, only
the best scoring representation is retained.

Results

A Directory of Useful Decoys (DUD). We have created
DUD as a research tool to benchmark structure-based virtual
screening. DUD contains 2950 annotated ligands for 40 diverse
targets, plus 36 decoy molecules for each annotated ligand, each
decoy having similar physical properties but dissimilar chemical

structures to its active counterpart (Table 1). Topological
dissimilarities were originally calculated using CACTVS fin-
gerprints, but it is convenient to compare decoys and ligands
using Daylight fingerprints, which are more widely used. Of
the 95 316 DUD decoys and based on standard Daylight
fingerprints,58 only 90 compounds are above a Tc of 0.85 to
any annotated ligand, only 400 compounds are above a Tc of
0.8, and only 1300 are above a Tc of 0.7, indicating that DUD
decoys are topologicallydissimilarto the annotated ligands and
are thus likely to be true negatives, although of course we cannot
be completely sure that this is the case.59

Histograms of five physical properties (molecular weight,
number of hydrogen-bond acceptors, number of hydrogen-bond
donors, number of rotatable bonds, and logP) were calculated
for the DUD ligands, DUD decoys, MDDR database com-
pounds, Jain’s decoys,23 and Rognan’s decoys15 (Figure 2). For
each of the 40 targets, the DUD decoys are designed to match
the physical properties of the specific ligands for that target.
Strictly speaking, there is no reason the amalgamation of the
40 decoy sets (the DUD decoys) should provide good decoys
for each of the 40 ligand sets (the DUD actives), but in fact
they typically do (see Discussion). The properties of the DUD
decoys are comparable to the active ligands from which they
were generated: they span the same ranges and have maxima
at about the same place. Conversely, the uncorrected databases
can differ substantially from the physical properties of the DUD
ligands (Figure 2). The largest differences are observed for the
1000 decoys introduced by Rognan, which differ substantially
in all physical properties from the DUD ligands. The 98 000

Figure 2. The physical property distributions of the ligands and different sets of decoys. The brown line represents the annotated ligands (2950
compounds); the blue line represents the DUD decoys (95 316 compounds); the green line represents the properties of the MDDR database (98 000
compounds); the orange line represents the Jain’s decoys (randomly selected 1000 ZINC druglike compounds), and the cyan line represents the
Rognan’s decoys (randomly selected 990 ACD compounds).
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MDDR database also differed significantly from the DUD
ligands, being typically larger in every physical property (e.g.,
9% larger, on average, in molecular weight and having 15%
more hydrogen-bond acceptors) than the DUD ligands. The 1000
decoy set introduced by Jain was the second best-matched to
the DUD ligands, after only the DUD decoys themselves,
typically differing only in being slightly smaller or lower in
physical properties (Figure 2). Of course, there is no reason
these other decoy sets should match the physical properties of
the DUD ligands, since they were not selected to match these
ligands. Nor is there any reason to require them to match, unless
one believes the DUD ligands to be especially representative
of good physical properties, which we do not contend. What
the differing physical properties among the decoy sets allow us
to probe is how matched and unmatched ligand-decoy sets
affect enrichment calculations in docking.

Overall Enrichments. Virtual screening is benchmarked
using two criteria: (1) enrichment of annotated ligands among
top scoring docked molecules from a database of decoys and
(2) the geometric fidelity of the docked poses compared to those
of the experimental structures. The docking enrichment factor
(EF) reflects the ability of the docking calculations to find true
positives throughout the background database compared to
random selection. This enrichment factor is calculated as EFsubset

) {ligandsselected/Nsubset}/{ligandstotal/Ntotal}.47 For instance, for
a given protein with 100 annotated ligands (ligandstotal) in a
database of 98 000 compounds (Ntotal), only one of the known
ligands (ligandsselected) would be expected to be found in any
chosen subset of 980 molecules (Nsubset) by random selection,
which corresponds to an enrichment factor of 1. The key results
of docking to 40 targets are summarized in Figure 3 and Table
1. Figure 3 shows the overall profile of percentage of ligands
found (y-axis) plotted as a function of the percentage of the
ranked docked database (x-axis in logarithmic scale) for each
system. Here, we present two different enrichments using two
different background databases, namely, the “entire database”
contains the 2950 DUD ligands and the 95 316 DUD decoys
(blue line), while the “own decoys” only includes the native
ligands and their corresponding decoys (red line). The percent-
age of true ligands found by docking at any given percentage
of the docking ranked database should always be greater
compared to being chosen by random selection (gray line). The
higher the percentage of known ligands found at a given
percentage of the ranked database, the better the enrichment
performance of the virtual screening. In general, the docking
enrichments are poorer against the “own decoys” than against
the entire database; for some targets, the enrichment difference
between the entire database and the “own decoys” is dramatic
(e.g. TK, PNP, and SAHH).

The enrichment results for entire-database docking may be
summarized using three enrichment indicators: EFmax (maxi-
mum enrichment factor), EF1 (enrichment factor at 1% of the
ranked database), and EF20 (enrichment factor at 20% of the
database) (Table 1). EFmaxand EF1 present the early enrichment,
while EF20 presents the late-stage database screening. Significant
enrichment is obtained for most targets, with an average EFmax

of 49.1, where 20 systems have EFmax greater than or very close
to 30, 10 systems have an EFmax less than 5, and only 4 out of
these 10 systems fail to enrich their native ligands above random.
Superior enrichments are observed in seven diverse targets with
EFmax greater than 100. On average, 17.3% and 52.9% of the
known ligands can be found in the top 1% and 20% of the
docking ranked database, respectively, corresponding to enrich-
ment factors of 17.3 and 2.6. It is also notable that six out of

10 targets with poor enrichment are kinases. We now take up
in more detail the dependence on decoys, docking specificity
via cross docking, and consider six representative targets.

1. Enrichments against DUD Compared to Uncorrected
Databases. To test the influence of decoys on docking
performance, we docked exactly the same ligand sets against
12 different targets, varying only the background decoy
database. We compared the 98 000 compounds of the MDDR,
the 98 266 compounds of DUD, and the 1000 compound sets
introduced by Rognan15 and Jain.23 For comparing the perfor-
mance of the large DUD and MDDR databases to the smaller
Rognan and Jain sets, we used receiver operator characteristic
(ROC) curves to avoid biases introduced in enrichment plots
when the ratio of actives to decoys grows large.60 ROC curves
plot sensitivity (Se) and specificity (Sp), where Sesubset )
{ligandsselected/ligandstotal} and Spsubset) {(decoystotal - decoys-
selected)/decoystotal}. We plotted the ROC curves as (1- Sp) (i.e.,
% selected decoys) versus Se (i.e., % selected ligands) (Figure
4). Like an enrichment plot, the further away the ROC curve is
above the diagonal, the better the docking enrichment. Docking
enrichments typically followed the following trend: the Rognan
decoys led to the best enrichments, followed closely by the
MDDR decoys, then the Jain decoys, with the worst enrichments
against DUD. Here, better enrichment means only less competi-
tive decoys. Thus, targets that had poor or no enrichment using
DUD had very respectable enrichments against the other decoy
sets, using exactly the same ligands and docking protocols. To
investigate whether a smaller decoy database itself introduces
artificial enrichment and thus unfairly biases the smaller decoy
sets, ROC curves were also generated using a randomly selected
1000 compounds from DUD and compared with ROC curves
using the entire DUD. No difference was observed (not shown),
suggesting that there is little size-dependent behavior using the
entire DUD versus a random portion of DUD. The more
competitive behavior of the DUD decoys presumably reflects
their closer physical similarity to the ligands docked; indeed,
the monotonic order of enrichments follows the level of
dissimilarity of the decoys to the ligands, with the Rognan
decoys being the most dissimilar and the Jain and DUD decoys
being the most similar and correspondingly leading to the worst
(i.e. most competitive) enrichments.

2. Docking Specificity via Cross-Docking Simulations.We
docked DUD against all 40 targets and compared the enrichment
of each ligand set against each target (Table 2). We used two
enrichment indicators, ETmax and ET20, to define the enrichment
performance for each matrix unit as very good (ETmax g 30
and ET20 g 3), good (30> ETmax g 20 and 3> ET20 g 2.5),
medium (20> ETmax g 10 and 2.5> ET20 g 2), or poor (ETmax

< 10 and ET20 < 2). An exception (e.g. ERantagonist) is made
when one of the two enrichment indicators is well above its
defined cutoff while the other is marginally below its cutoff. In
these cases an averaged enrichment performance classification
is assigned. Several features of the cross-docking table are
noteworthy. First, it is a sparse matrix, mostly white, showing
that most annotated ligand sets are not highly enriched against
most targets. Second, many of the diagonal elements are black
or red, indicating very good or good enrichment of the target’s
own ligands. Third, many of the off diagonals make sense. For
example, serine protease ligands (thrombin, trypsin and factor
Xa) are enriched against other serine protease targets; nuclear
hormone receptor ligands are enriched against most nuclear
hormone receptors, such as androgen receptor (AR), mineralo-
corticoid receptor (MR), and estrogen receptor (ER); and
nucleoside analogues are enriched against most of the nucleo-
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Figure 3. (Continued on next page).
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side-recognizing enzymes, such as thymidine kinase (TK),
purine nucleoside phosphorylase (PNP), and S-adenosyl-ho-
mocysteine hydrolase (SAHH). Fourth, the kinases generally
show poor enrichments, not just of their own ligands but of all
ligand lists. More generally, we note that when the cognate
ligands are not enriched against a target, other ligand lists are
also not enriched, giving rise to blank rows. Conversely, when
its own ligands are well-enriched against a target, other ligand
lists are often also enriched.

3. Automated vs Semiautomated docking.The large
number of docking targets motivated us to develop a fully

automated docking engine. We were able to automate most of
the steps formerly performed manually, resulting in satisfactory
enrichments for 24 of 40 targets. For the remaining 16 targets,
we resorted to a semiautomated procedure involving expert
intervention in the preparation of the receptor binding site.
Thirteen of the 16 targets with poor enrichment using the
automated protocol were improved with expert intervention
(Supporting Information, Figure S4). This intervention was often
trivial; we did not try very hard to maximize the docking
performance and suspect that further intervention could improve
the results even more, but that was not the goal of this study.

Figure 3. Docking enrichment plots for 40 protein targets using DUD. The docking ranked database (x-axis) is plotted against the percentage of
known ligands found by calculations (y-axis) at any given percentage of ranked database. Targets are listed in same order as in Table 1, and six
representative systems are highlighted in light yellow (see the text). The gray line represents the results expected from selecting ligands randomly;
the blue line is docking enrichment against the entire DUD database (98 266 compounds), and the red line is the docking enrichment against the
“own decoy” subset for any target. “Automated” represents the results achieved from the fully automated procedure; “semiautomated” represents
the enrichments obtained with some expert intervention.
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4. Detailed Results for Six Representative Systems.We
examined several representative targets in greater detail (high-
lighted in Table 1 and Figure 3). ER and TK were chosen on
the basis of their strong ligand enrichment as well as a
substantial number of published docking studies.15,19,20,23,28-30,37-40

P38 MAP kinase was chosen to represent poorly performing
protein kinases. ADA was chosen to represent targets that failed
with the fully automated docking engine, but were rescued by
the semiautomated procedure. ALR2 was chosen to represent
targets with intermediate enrichment. InhA was chosen to
represent what we consider a failure of our docking method.
For these six representative systems, the docking accuracy is
presented by both the enrichment performance and the ability
to reproduce the binding geometry observed in the crystal-
lographic complex structure. In assessing the docked binding
geometries, we only consider the geometry of the crystal-
lographic ligand produced as part of the overall DUD database
screen without optimization; the ligand shown has been prepared
as every other DUD molecule, starting from the SMILES string
representation, to avoid bias. Depending on the size of the
binding pocket and our sampling criteria, docking DUD takes
several hours to several days per target on a single 2.8 GHz
CPU (Table 3).

4A. Estrogen Receptor (ERantagonist). ER is considered to
be an easy docking target because of its deeply buried
hydrophobic binding site and high-affinity ligands.15 Consistent
with this view, automated docking achieves a significant early
enrichment with an EFmax of 101.6 in the top 0.1% of the ranked
database. This corresponds to finding four ER antagonists among
the top scoring 98 compounds from a screen of 98 000
compounds. From automated docking, the docked pose of the
crystallographic ligand, included and prepared as part of DUD,
correctly reproduces the crystallographic binding pose of
4-hydroxytamoxifen (Figure 5A).

As was observed for almost all targets, docking enrichments
were strongly influenced by the choice of background database.
For estrogen receptor, the three other decoys sets (the 990
Rognan decoys, the 1000 Jain decoys, and the 98 000 MDDR
decoys) all led to much better enrichments than did DUD, with
the early enrichment being particularly striking (Figure 4). Since
the docking parameters and the ligands were exactly the same
in each calculation, the better enrichments compared to the DUD
results can only mean that the other databases present easier
decoys. This view is substantiated by comparing the physical
properties of the ER antagonists to the decoys in each
background database. In DUD, these properties are closely

Figure 4. ROC curves for 12 targets using four different background databases, DUD (blue), MDDR (green), Jain’s decoys (orange), and Rognan’s
decoys (cyan). The gray line represents the results expected from random selection of ligands. The ROC curves were plotted as the Se (% selected
actives) versus (1- Sp) (% selected decoys). The same annotated ligands were used for the different background databases. Targets are listed in
the same order as in Table 1.
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matched, by design. In the other decoys sets, there are substantial
differences. For example, the molecular weight varies from 380
to 460 for 90% of ER antagonists. Sixty percent of DUD
compounds are within this range, whereas only 40%, 42%, and
44% of compounds in Rognan’s set, MDDR, and Jain’s set
satisfy this criterion, respectively. In addition, the ER binding
site requires specific hydrogen-bonding interactions, whereas a
large portion of Rognan’s decoys lack hydrogen-bonding
functionalities, further increasing the likelihood of them being
easier decoys than either the MDDR or Jain’s decoys.

4B. Thymidine Kinase (TK). TK is considered to be a
difficult target for docking because of receptor flexibility, a

highly exposed binding pocket, the importance of water-bridged
interactions, and the low affinity of most ligands.15 Despite these
drawbacks, a high overall enrichment was achieved for this
target (Figure 3). From automated docking, the docked pose
corresponds closely to the crystallographic structure (Figure 5B).
We note that TK is among the most promiscuous targets, in
that it also highly enriches non-native ligands (Table 2), where
those nonligands are either nucleoside analogues (PNP and
SAHH ligands) or highly polar or charged small compounds
(ADA, COMT, ALR2, and PARP ligands).

Of the 12 targets where we compared decoy sets, TK was
the only one where DUD led to better enrichments than the

Table 2. Matrix of Cross-Enrichmentsa

a The color-coded table unit presents poor (white), medium (green), good (red), and very good enrichment (black). Dark boxes are drawn around related
targets (nuclear hormone receptors, kinases, serine proteases, metalloenzymes, folate enzymes, and other enzymes). Very good (ETmax g 30 and ET20 g 3),
good (30> ETmax g 20 and 3> ET20 g 2.5), medium (20> ETmax g 10 and 2.5> ET20 g 2), and poor (ETmax < 10 and ET20 < 2). The only exception
is when one of the two enrichment indicators is well above the defined cutoff while the other is marginally below the defined cutoff, and then an averaged
enrichment performance is assigned to compensate it.

Table 3. Docking Statistics on Six Representative Targets

receptor

unique
molecules
scoreda

total
molecules
scoredb

orientations
sampled per

molecule

conformations
sampled per

molecule

total
configurations

scoredb

total
time
(h)c

ER 97 427 416 990 1 895 6 543 2.69× 1010 54.4
P38 MAP 93 887 294 917 592 7 875 8.97× 109 20.1
TK 37 240 180 451 3 437 4 302 2.67× 109 21.9
ADE 85 053 297 400 14 632 5 308 2.19× 1010 65.5
ALR2 98 724 430 313 4 272 10 109 1.44× 1011 296.4
InhA 97 668 429 579 2 325 6 809 5.87× 1010 123.5

a Only orientations and configurations passing the steric filter were scored.b Some molecules were represented in the database in multiple rigid fragment,
protonation, and tautomeric forms.c Scaled to reflect time on a 2800-MHz Pentium IV.
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other sets. The TK inhibitors are much smaller and more
hydrophilic than most other ligand sets and correspondingly
smaller than much of DUD. The molecular weight of 70% of
the TK inhibitors is between 210 and 290, but only a small
portion of the background database compounds fell within this
range, 5%, 9%, 10%, and 19% of DUD, Jain’s set, MDDR,
and Rognan’s decoys, respectively. The idiosyncratic nature of
the TK ligands is brought home by comparing the very good
enrichment against all of DUD compared with the relatively
miserable enrichment compared to the “own decoys” of the TK
ligands (Figure 3, highlighted). This is one of the rare cases
where the overall DUD decoys had very different physical
properties from the “own decoys” of a particular target.

4C. P38 Mitogen Activated Protein Kinase (P38 MAP).
P38 MAP kinase is a challenging target for docking due to its
structural flexibility. For many ligands, a new allosteric site is
induced upon binding.61 Docking is also complicated by the
high degree of solvent exposure and a relatively shallow,
hydrophobic cleft; taken together, these features result in poor
enrichment and docking geometries that miss critical interac-
tions. Many highly ranked decoys explore irrelevant binding
regions, and manual intervention had little effect. From the
automated docking, the docked ligand reproduces the correct
binding geometry of urea and naphthyl groups, but not the
morpholino substituent on the naphthyl ring, which are thought
to be crucial for potency61 (Figure 5C). Similar defects were
observed with other protein kinases (PDGFrb, VEGFr2, EGFr,
SRC, and FRFr1).

Like many other targets, the enrichment performance in
decreasing order is Rognan’s set, MDDR, Jain’s set, and DUD.
As for TK, a molecular size dependence biases the docking
enrichments. The molecular weight ranges from 320 to 410 for
75% of the P38 kinase inhibitors, whereas for DUD, Jain’s set,
and MDDR, 67%, 54%, and 37% of molecules fall within this
range, respectively, directly corresponding to their enrichment
performance. Although sixty percent of Rognan’s set falls within
this weight range, a lack of suitable hydrogen-bonding functional
groups in the set ensures the best enrichment performance.

4D. Adenosine Deaminase (ADA).ADA is one of four
metalloenzymes we targeted. Its binding pocket is large and
contains a zinc ion coordinated by three histidines. No enrich-
ment is achieved for this target via fully automated docking.
After manually redistributing the partial atomic charges of the
Nε-atoms in the ligating histidine residues to the Zn ion, which
we have previously found to be important for docking to
metalloenzymes,34 and included one structural water in the active
site, the enrichment improved significantly (Supporting Infor-
mation, Figure S4). From automated docking, the docked ligand
is approximately matched with the crystallographic ligand.
Although some key groups and interactions have shifted, the
ligand still occupies the same space as the crystallographic
ligand, inhibiting approach to the catalytic zinc (Figure 5D).
Electrostatics plays an important role in these metalloenzymes.
All ADA inhibitors contain hydrogen-bond donors ranging from
1 to 5, whereas 95%, 75%, 69%, and 45% for DUD, Jain’s set,
MDDR, and Rognan’s decoys do, respectively. Correspondingly,
the enrichments with the MDDR and Rognan decoys are better
than those with DUD and Jain’s decoys.

4E. Aldose Reductase (ALR2).ALR2 presents a solvent-
exposed binding surface that requires both good polar and
hydrophobic complementarity between the enzyme and inhibi-
tors. Intermediate enrichment performance is observed in ALR2
with a good early enrichment (EF1 ) 38) but a rather weak
enrichment at a later stage of database screening (EF20 ) 2.3),
which might be attributed to the conformational changes induced
by the binding of different sizes of ligands. From automated
docking, the docking pose reproduces the critical polar interac-
tions within the protein binding site and overlaps with the
crystallographic binding pose except for the flipping of the
aromatic ring (Figure 5E). Unsurprisingly, both the molecular
size and hydrogen-bonding capacity of the decoys influence
docking enrichment. The molecular weight ranges from 260 to
400 for 85% of the ALR2 inhibitors, whereas 72%, 68%, 66%,
and 45% of the DUD decoys, Jain’s set, Rognan’s decoys, and
the MDDR compounds do, respectively, which explains the
better enrichment using MDDR. Although, molecular size alone

Figure 5. Binding pose predictions for docked ligands (green) superposed on crystallographic structures (colored by atom type) for six representative
targets. Key hydrogen bonds are shown by yellow lines, and the protein molecular surface65 is colored by atom type. Images generated with
Chimera.66
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is not adequate to distinguish Rognan’s set from the others, the
absence of suitable hydrogen-bonding functional groups ensures
its best enrichment performance.

4F. InhA. The worst docking scenario occurs with InhA
(Figure 3), where docking gives no enrichment despite reason-
able docking geometries of the crystallographic ligand and
related analogues (Figure 5F), a reminder that reproducing the
crystallographic binding pose is a necessary but not sufficient
criterion for evaluating virtual screening. The docking enrich-
ment decreases in the order: Rognan’s set, MDDR, Jain’s set,
the DUD decoys. It seems that the requirements of the presence
of hydrogen-bond acceptors and the steric fitness to the InhA
binding site are important for ligand binding, which makes the
DUD decoys the most competitive.

Considering all 40 targets, docking enrichment varied from
excellent to poor, returning what we consider to be satisfactory
but not stellar enrichments. Typically, poor enrichments could
be attributed to sampling of ligand conformations and, in the
cases of kinases, undersampling those of the receptor. There
were other targets for which the differentiation between ligands
and strong decoys was uninspiring, reflecting failures of our
physics-based scoring function. These are all important weak-
nesses in our docking program and are not uncommon in the
field. As important as they are, they are not the subject of this
paper, which is focused on database bias and its role in
evaluating docking enrichment factors.

Discussion
Three key results emerge from this study. Perhaps the one

that will have the greatest pragmatic impact is the creation of
the DUD database itself. DUD is composed 2950 annotated
actives together with compounds having dissimilar topology but
similar physical properties to the active ligands. Because of these
properties, it provides a challenging, but relatively unbiased,
metric for evaluating docking performance. As DUD is com-
posed entirely of compounds in the public domain, it may be
used without restriction; it may be downloaded from http://
blaster.docking.org/dud/. Second, by docking all ligand sets
against all 40 targets, we unintentionally undertook a very large
“cross-docking” experiment. The specificity matrix that results
from these cross-docking results suggests interesting patterns
relating to docking promiscuity and level of difficulty for
docking targets. Finally, it is somewhat surprising that a fully
automated docking pipeline yielded reasonably good results for
24 of 40 cases and that minor expert intervention improved
docking enrichments for 13 of the remaining 16 targets.

DUD is by far the largest and most comprehensive public
data set for benchmarking virtual screening programs of which
we are aware. The forty targets used to create DUD offer a
diverse range of binding site types: some have deeply buried
hydrophobic pockets, such as estrogen receptor and COX-2;
some have more open binding sites displaying both polar and
apolar binding regions, such as DHFR and P38 MAP kinase;
and some have highly solvent-exposed polar sites, such as
thymidine kinase and neuraminidase. The receptor diversity is
reflected in the ligands they recognize: some are mostly
hydrophobic (e.g. the ER ligands have logP values in the range
of 3-8), some are highly polar (e.g. the TK ligands have logP
values between-3 and 2), some are mostly cationic (e.g. the
thrombin ligands have one or two positively charged groups)
and some are mostly anionic (e.g. the GART ligands typically
have two negatively charged groups). This binding site diversity
allows us to evaluate the robustness and generality of our
docking methods with some confidence that the range of targets
is representative.

Our results are consistent with the observation by Verdonk27

that enrichment depends on the background database used and
suggest that misleadingly good enrichment may result if the
physical properties of the decoys are easily distinguished from
those of the actives (Figure 4). It is for this reason that the
uncorrected databases, using exactly the same basis ligands,
consistently lead to better enrichments than docking with DUD.
For this purpose, good enrichments indicate nothing other than
relatively poor decoys. Even so large and diverse a database as
the MDDR led to artificial improvements in enrichment factors,
typically by half a log over DUD. This is not to say that DUD
itself is ideal. An indication of this is the greater stringency
often provided by the “own decoys”, i.e., those decoys matched
only to the annotated ligands for a particular target, compared
to DUD overall (compare red and blue curves in Figure 3).
Indeed, it could be argued that it is the “own decoys” that should
always be used and not the amalgamated DUD. Our own view
is that both “own decoy” and amalgamated DUD docking should
be performed, because they present distinct challenges to the
docking program. We are aware, also, that the five physical
properties we used to match ligands with decoys were not
comprehensive, and it is likely that other properties could
usefully be included. DUD can be seen as a procedure for
building a decoy database as much as an instance of one. Thus,
there is probably no such thing as a perfect single decoy set for
testing docking algorithms against all targets, but there certainly
are better and worse ones, and the former offer better protection
against artifactual performance to the unwary docker.

In docking each of 40 DUD ligand and decoy sets against
all 40 targets, we unintentionally undertook a very large cross-
docking experiment and so arrived at a measure of library-scale
specificity. “Cross-docking” typically investigates the specificity
of a particular ligand for a particular protein conformation26,62,63

or, more rarely, the specificity of a particular ligand for a few
possible targets.64 It is a more subtle gauge of docking success
than simply the distance to a crystallographic orientation.
Correspondingly, the specificity of ligands for their cognate
receptor versus the other 39 targets more stringently measures
docking success than enrichment against a single target alone.
Most of the diagonal elements in the cross-docking matrix
indicate decent to very good enrichment (Table 2), and the
matrix overall is sparse, with little enrichment against off-
diagonal targets. Specificity was rarely perfect, however. Often,
off-diagonal promiscuity reflected similarities among the targets
(squared regions along the diagonal in Table 2). Thus the nuclear
hormone analogues have moderate to very good enrichments
against several noncognate nuclear hormone receptors and the
serine protease inhibitors often do well against not only their
own targets, but also against several of the other serine proteases
that recognize similar functionality. But even this is not the full
storysmany targets that enriched their cognate ligands also
enriched ligands of unrelated targets, typically those with similar
physical properties as their own ligands. Indeed, one of the most
striking features of the cross-docking matrix is that targets that
had very good enrichments for their cognate ligands typically
also had good enrichments against a few other ligand sets,
whereas targets that had poor enrichment for their own ligands
typically had no enrichment against any other sets (white rows
in Table 2). These latter, white-row targets are effectively
difficult targets, at least for our docking program.

Somewhat to our surprise, fully automated docking performed
well in 24 of 40 cases (Figure 3, Table 1). Typically in docking,
one spends a great deal of time visually inspecting the receptor
site, identifying binding site hot spots, adjusting the protonation
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states and orientation of rotatable protons of critical binding
site residues, and deciding which structural waters, cofactors,
or metal ions should be included in the model. This artisanal
treatment becomes less feasible in larger studies, such as this
one, and indeed has inhibited the proteome-level efforts in
docking that are common in related fields, such as comparative
modeling of protein structures.49 Whereas we do not anticipate
the end of artisanship in docking campaigns, after all we had
to return to manual intervention in 40% of the targets, the
relative success of the automated pipeline suggests that efforts
to expand such treatments merit more attention.

In docking screens, one cannot expect to correctly predict
binding affinity or even monotonically rank order the ligands,
so the method falls back on the weak metric of ligand
enrichment. Enrichment is a weak measure of docking success
because it is always measured relative to the decoys in the
database. The very same docking program with the same ligands
can have very good or very mediocre enrichments with worse
or better decoys. This is currently something we must live with
as a field. What we can do is minimize the biases inherent in
enrichment factors by matching the physical properties in decoys
with those of the ligands. DUD attempts to do just this, and
may provide a useful benchmarking set for the field. It is
available to all investigators at http://blaster.docking.org/dud/.
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